本文最后更新于 2 分钟前,文中所描述的信息可能已发生改变。
Q1. 执行指令后的得分
解题思路
模拟题,根据题意进行遍历,累加答案
示例代码
python
class Solution:
def calculateScore(self, instructions: List[str], values: List[int]) -> int:
n = len(instructions)
vis = set()
ans = 0
i = 0
while i not in vis and 0 <= i < n:
vis.add(i)
if instructions[i] == 'add':
ans += values[i]
i += 1
else:
i += values[i]
return ans
Q2. 非递减数组的最大长度
解题思路
单调栈,维护区间的最大值
示例代码
python
class Solution:
def maximumPossibleSize(self, nums: List[int]) -> int:
st = []
for x in nums:
cur = x
while st and st[-1] > cur:
cur = max(cur, st.pop())
st.append(cur)
return len(st)
Q3. 求出数组的 X 值 I
解题思路
线性 DP,维护前一个数的余数状态,也就 k 个,总体时间复杂度为 O(nk)
示例代码
python
class Solution:
def resultArray(self, nums: List[int], k: int) -> List[int]:
n = len(nums)
ans = [0] * k
f = [0] * k
for x in nums:
x %= k
nf = [0] * k
nf[x] += 1
for i in range(k):
nf[(i * x) % k] += f[i]
for i in range(k):
ans[i] += nf[i]
f = nf[:]
return ans
Q4. 求出数组的 X 值 II
解题思路
示例代码
python
class Solution:
def resultArray(self, nums: List[int], k: int, queries: List[List[int]]) -> List[int]:
n = len(nums)
nums = [x % k for x in nums]
def op(a: Tuple[int, List[int]], b: Tuple[int, List[int]]) -> Tuple[int, List[int]]:
cnt = a[1].copy()
left_m = a[0]
for m, c in enumerate(b[1]):
cnt[left_m * m % k] += c
return left_m * b[0] % k, cnt
e = (1, [0] * k)
v = []
for x in nums:
res = [0] * k
res[x] += 1
v.append((x, res))
sg = SegTree(op, e, v)
ans = []
for i, v, s, x in queries:
res = [0] * k
res[v % k] += 1
sg.set(i, (v % k, res))
_, cnt = sg.prod(s, n)
ans.append(cnt[x])
return ans
py
import typing
class SegTree:
__slots__ = ["_op", "_e", "_n", "_log", "_size", "_d"]
def __init__(self, op: typing.Callable[[typing.Any, typing.Any], typing.Any],
e: typing.Any,
v: typing.Union[int, typing.List[typing.Any]]) -> None:
"""
Args:
op: maintain operation function, such as add, max, min, etc.
e: initial value of the segment tree
v: initial value of the array
"""
self._op = op
self._e = e
if isinstance(v, int):
v = [e] * v
self._n = len(v)
self._log = (self._n - 1).bit_length()
self._size = 1 << self._log
self._d = [e] * (2 * self._size)
for i in range(self._n):
self._d[self._size + i] = v[i]
for i in range(self._size - 1, 0, -1):
self._update(i)
def set(self, p: int, x: typing.Any) -> None:
assert 0 <= p < self._n
p += self._size
self._d[p] = x
for i in range(1, self._log + 1):
self._update(p >> i)
def get(self, p: int) -> typing.Any:
assert 0 <= p < self._n
return self._d[p + self._size]
def prod(self, left: int, right: int) -> typing.Any:
assert 0 <= left <= right <= self._n
sml = self._e
smr = self._e
left += self._size
right += self._size
while left < right:
if left & 1:
sml = self._op(sml, self._d[left])
left += 1
if right & 1:
right -= 1
smr = self._op(self._d[right], smr)
left >>= 1
right >>= 1
return self._op(sml, smr)
def all_prod(self) -> typing.Any:
return self._d[1]
def max_right(self, left: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= left <= self._n
assert f(self._e)
if left == self._n:
return self._n
left += self._size
sm = self._e
first = True
while first or (left & -left) != left:
first = False
while left % 2 == 0:
left >>= 1
if not f(self._op(sm, self._d[left])):
while left < self._size:
left *= 2
if f(self._op(sm, self._d[left])):
sm = self._op(sm, self._d[left])
left += 1
return left - self._size
sm = self._op(sm, self._d[left])
left += 1
return self._n
def min_left(self, right: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= right <= self._n
assert f(self._e)
if right == 0:
return 0
right += self._size
sm = self._e
first = True
while first or (right & -right) != right:
first = False
right -= 1
while right > 1 and right % 2:
right >>= 1
if not f(self._op(self._d[right], sm)):
while right < self._size:
right = 2 * right + 1
if f(self._op(self._d[right], sm)):
sm = self._op(self._d[right], sm)
right -= 1
return right + 1 - self._size
sm = self._op(self._d[right], sm)
return 0
def _update(self, k: int) -> None:
self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])