本文最后更新于 1 分钟前,文中所描述的信息可能已发生改变。
Q1. 将水果放入篮子 Ⅱ
解题思路
暴力
示例代码
python
class Solution:
def numOfUnplacedFruits(self, fruits: List[int], baskets: List[int]) -> int:
ans = len(fruits)
for i, x in enumerate(fruits):
for j, y in enumerate(baskets):
if y >= x:
baskets[j] = 0
ans -= 1
break
return ans
Q2. 选出和最大的 K 个元素
解题思路
用堆保留 K 个最大的元素
示例代码
python
class Solution:
def findMaxSum(self, nums1: List[int], nums2: List[int], k: int) -> List[int]:
n = len(nums1)
s = i = 0
h = []
ans = [0] * n
li = sorted([(x, i) for i, x in enumerate(nums1)])
while i < n:
while len(h) > k:
s -= heappop(h)
st = i
tmp = s
while i < n and li[i][0] == li[st][0]:
heappush(h, nums2[li[i][1]])
s += nums2[li[i][1]]
ans[li[i][1]] = tmp
i += 1
return ans
Q3. 将水果放入篮子 Ⅲ
解题思路
示例代码
python
class Solution:
def numOfUnplacedFruits(self, fruits: List[int], baskets: List[int]) -> int:
n = len(fruits)
ans = 0
segment_tree = SegTree(lambda x, y: x if x > y else y, -1, baskets)
for i, x in enumerate(fruits):
i = segment_tree.max_right(0, lambda y: y < x)
if i == n:
ans += 1
else:
segment_tree.set(i, -1)
return ans
py
import typing
class SegTree:
__slots__ = ["_op", "_e", "_n", "_log", "_size", "_d"]
def __init__(self, op: typing.Callable[[typing.Any, typing.Any], typing.Any],
e: typing.Any,
v: typing.Union[int, typing.List[typing.Any]]) -> None:
"""
Args:
op: maintain operation function, such as add, max, min, etc.
e: initial value of the segment tree
v: initial value of the array
"""
self._op = op
self._e = e
if isinstance(v, int):
v = [e] * v
self._n = len(v)
self._log = (self._n - 1).bit_length()
self._size = 1 << self._log
self._d = [e] * (2 * self._size)
for i in range(self._n):
self._d[self._size + i] = v[i]
for i in range(self._size - 1, 0, -1):
self._update(i)
def set(self, p: int, x: typing.Any) -> None:
assert 0 <= p < self._n
p += self._size
self._d[p] = x
for i in range(1, self._log + 1):
self._update(p >> i)
def get(self, p: int) -> typing.Any:
assert 0 <= p < self._n
return self._d[p + self._size]
def prod(self, left: int, right: int) -> typing.Any:
assert 0 <= left <= right <= self._n
sml = self._e
smr = self._e
left += self._size
right += self._size
while left < right:
if left & 1:
sml = self._op(sml, self._d[left])
left += 1
if right & 1:
right -= 1
smr = self._op(self._d[right], smr)
left >>= 1
right >>= 1
return self._op(sml, smr)
def all_prod(self) -> typing.Any:
return self._d[1]
def max_right(self, left: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= left <= self._n
assert f(self._e)
if left == self._n:
return self._n
left += self._size
sm = self._e
first = True
while first or (left & -left) != left:
first = False
while left % 2 == 0:
left >>= 1
if not f(self._op(sm, self._d[left])):
while left < self._size:
left *= 2
if f(self._op(sm, self._d[left])):
sm = self._op(sm, self._d[left])
left += 1
return left - self._size
sm = self._op(sm, self._d[left])
left += 1
return self._n
def min_left(self, right: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= right <= self._n
assert f(self._e)
if right == 0:
return 0
right += self._size
sm = self._e
first = True
while first or (right & -right) != right:
first = False
right -= 1
while right > 1 and right % 2:
right >>= 1
if not f(self._op(self._d[right], sm)):
while right < self._size:
right = 2 * right + 1
if f(self._op(self._d[right], sm)):
sm = self._op(self._d[right], sm)
right -= 1
return right + 1 - self._size
sm = self._op(self._d[right], sm)
return 0
def _update(self, k: int) -> None:
self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])
Q4. 删除一个冲突对后最大字数组数目
这道题很神秘,以后再来解决吧!