LeetCode Biweekly Contest 160

本文最后更新于 2 分钟前,文中所描述的信息可能已发生改变。

3602. 十六进制和三十六进制转化 - 力扣(LeetCode)

解题思路

代码复用,转换进制

库函数解法详见参考

参考:库函数写法(Python/Java/C++/Go)

示例代码

python
class Solution:
    def concatHex36(self, n: int) -> str:
        d = digits + ascii_uppercase
        def convert(n, base):
            ans = []
            while n:
                ans.append(d[n % base])
                n //= base
            return ''.join(ans[::-1])
        return convert(n * n, 16) + convert(n * n * n, 36)
python
import numpy as np

class Solution:
    def concatHex36(self, n: int) -> str:
        return np.base_repr(n ** 2, base=16) + np.base_repr(n ** 3, base=36)

3603. 交替方向的最小路径代价 II - 力扣(LeetCode)

解题思路

网格图 DP,从上方或左边转移,注意起点和终点的权值计算方式

示例代码

python
class Solution:
    def minCost(self, m: int, n: int, w: List[List[int]]) -> int:
        f = [[inf] * (n + 1) for _ in range(m + 1)]
        f[1][0] = f[0][1] = 0
        for i in range(m):
            for j in range(n):
                v = w[i][j] + (i + 1) * (j + 1)
                if i == j == 0 or i == m - 1 and j == n - 1:
                    v -= w[i][j]
                f[i + 1][j + 1] = min(f[i + 1][j + 1], f[i][j + 1] + v)
                f[i + 1][j + 1] = min(f[i + 1][j + 1], f[i + 1][j] + v)
        return f[-1][-1]

3604. 有向图中到达终点的最少时间 - 力扣(LeetCode)

解题思路

最短路,可以用模板,不用模板就手搓,没啥难度

示例代码

python
class Solution:
    def minTime(self, n: int, edges: List[List[int]]) -> int:
        g = [[] for _ in range(n)]
        for u, v, st, ed in edges:
            g[u].append((v, st, ed))
        h = [(0, 0)]
        d = [inf] * n
        while h:
            cur, u = heappop(h)
            if u == n - 1:
                return cur
            for v, st, end in g[u]:
                if cur > end:
                    continue
                tmp = max(cur, st) + 1
                if tmp < d[v]:
                    d[v] = tmp
                    heappush(h, (tmp, v))
        return -1

3605. 数组的最小稳定性因子 - 力扣(LeetCode)

解题思路

笨蛋解法:二分查找最小稳定子数组,用线段树维护区间最大公因数,修改只用修改区间最右端即可,这样可以使[l, l + m] -> [m, m + m]均为不稳定数组,计数跳至 m + 1,继续计算需修改的次数即可

智慧解法: logTrick,详见参考

参考:二分答案 + logTrick / 栈 + 滑动窗口(Python/Java/C++/Go)

示例代码

python
class Solution:
    def minStable(self, nums: List[int], maxC: int) -> int:
        n = len(nums)
        seg = SegmentTree(gcd, 0, nums)
        l = 1
        r = n
        while l <= r:
            m = l + r >> 1
            i = 0
            cnt = 0
            while i + m <= n:
                g = seg.prod(i, i + m)
                if g > 1:
                    i += m - 1
                    cnt += 1
                i += 1
            if cnt > maxC:
                l = m + 1
            else:
                r = m - 1
        return r
py
import typing


class SegTree:
    __slots__ = ["_op", "_e", "_n", "_log", "_size", "_d"]

    def __init__(self, op: typing.Callable[[typing.Any, typing.Any], typing.Any],
                       e: typing.Any,
                       v: typing.Union[int, typing.List[typing.Any]]) -> None:
        """
        Args:
                op: maintain operation function, such as add, max, min, etc.
                e: initial value of the segment tree
                v: initial value of the array
        """
        self._op = op
        self._e = e

        if isinstance(v, int):
            v = [e] * v

        self._n = len(v)
        self._log = (self._n - 1).bit_length()
        self._size = 1 << self._log
        self._d = [e] * (2 * self._size)

        for i in range(self._n):
            self._d[self._size + i] = v[i]
        for i in range(self._size - 1, 0, -1):
            self._update(i)

    def set(self, p: int, x: typing.Any) -> None:
        assert 0 <= p < self._n

        p += self._size
        self._d[p] = x
        for i in range(1, self._log + 1):
            self._update(p >> i)

    def get(self, p: int) -> typing.Any:
        assert 0 <= p < self._n

        return self._d[p + self._size]

    def prod(self, left: int, right: int) -> typing.Any:
        assert 0 <= left <= right <= self._n

        sml = self._e
        smr = self._e
        left += self._size
        right += self._size

        while left < right:
            if left & 1:
                sml = self._op(sml, self._d[left])
                left += 1
            if right & 1:
                right -= 1
                smr = self._op(self._d[right], smr)
            left >>= 1
            right >>= 1

        return self._op(sml, smr)

    def all_prod(self) -> typing.Any:
        return self._d[1]

    def max_right(self, left: int,
                                f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= left <= self._n
        assert f(self._e)

        if left == self._n:
            return self._n

        left += self._size
        sm = self._e

        first = True
        while first or (left & -left) != left:
            first = False
            while left % 2 == 0:
                left >>= 1
            if not f(self._op(sm, self._d[left])):
                while left < self._size:
                    left *= 2
                    if f(self._op(sm, self._d[left])):
                        sm = self._op(sm, self._d[left])
                        left += 1
                return left - self._size
            sm = self._op(sm, self._d[left])
            left += 1

        return self._n

    def min_left(self, right: int,
                             f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= right <= self._n
        assert f(self._e)

        if right == 0:
            return 0

        right += self._size
        sm = self._e

        first = True
        while first or (right & -right) != right:
            first = False
            right -= 1
            while right > 1 and right % 2:
                right >>= 1
            if not f(self._op(self._d[right], sm)):
                while right < self._size:
                    right = 2 * right + 1
                    if f(self._op(self._d[right], sm)):
                        sm = self._op(self._d[right], sm)
                        right -= 1
                return right + 1 - self._size
            sm = self._op(self._d[right], sm)

        return 0

    def _update(self, k: int) -> None:
        self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])
LeetCode Weekly Contest 457
LeetCode Weekly Contest 456